3.15 \(\int \frac{\cos ^2(c+d x) (A+C \sec ^2(c+d x))}{\sqrt [3]{b \sec (c+d x)}} \, dx\)

Optimal. Leaf size=93 \[ \frac{3 A b^2 \tan (c+d x)}{7 d (b \sec (c+d x))^{7/3}}-\frac{3 b (4 A+7 C) \sin (c+d x) \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{2}{3},\frac{5}{3},\cos ^2(c+d x)\right )}{28 d \sqrt{\sin ^2(c+d x)} (b \sec (c+d x))^{4/3}} \]

[Out]

(-3*b*(4*A + 7*C)*Hypergeometric2F1[1/2, 2/3, 5/3, Cos[c + d*x]^2]*Sin[c + d*x])/(28*d*(b*Sec[c + d*x])^(4/3)*
Sqrt[Sin[c + d*x]^2]) + (3*A*b^2*Tan[c + d*x])/(7*d*(b*Sec[c + d*x])^(7/3))

________________________________________________________________________________________

Rubi [A]  time = 0.109311, antiderivative size = 93, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.121, Rules used = {16, 4045, 3772, 2643} \[ \frac{3 A b^2 \tan (c+d x)}{7 d (b \sec (c+d x))^{7/3}}-\frac{3 b (4 A+7 C) \sin (c+d x) \, _2F_1\left (\frac{1}{2},\frac{2}{3};\frac{5}{3};\cos ^2(c+d x)\right )}{28 d \sqrt{\sin ^2(c+d x)} (b \sec (c+d x))^{4/3}} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^2*(A + C*Sec[c + d*x]^2))/(b*Sec[c + d*x])^(1/3),x]

[Out]

(-3*b*(4*A + 7*C)*Hypergeometric2F1[1/2, 2/3, 5/3, Cos[c + d*x]^2]*Sin[c + d*x])/(28*d*(b*Sec[c + d*x])^(4/3)*
Sqrt[Sin[c + d*x]^2]) + (3*A*b^2*Tan[c + d*x])/(7*d*(b*Sec[c + d*x])^(7/3))

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 4045

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e
 + f*x]*(b*Csc[e + f*x])^m)/(f*m), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rule 3772

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x])^(n - 1)*((Sin[c + d*x]/b)^(n - 1)
*Int[1/(Sin[c + d*x]/b)^n, x]), x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 2643

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1)*Hypergeomet
ric2F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2])/(b*d*(n + 1)*Sqrt[Cos[c + d*x]^2]), x] /; FreeQ[{b, c, d, n
}, x] &&  !IntegerQ[2*n]

Rubi steps

\begin{align*} \int \frac{\cos ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt [3]{b \sec (c+d x)}} \, dx &=b^2 \int \frac{A+C \sec ^2(c+d x)}{(b \sec (c+d x))^{7/3}} \, dx\\ &=\frac{3 A b^2 \tan (c+d x)}{7 d (b \sec (c+d x))^{7/3}}+\frac{1}{7} (4 A+7 C) \int \frac{1}{\sqrt [3]{b \sec (c+d x)}} \, dx\\ &=\frac{3 A b^2 \tan (c+d x)}{7 d (b \sec (c+d x))^{7/3}}+\frac{1}{7} \left ((4 A+7 C) \left (\frac{\cos (c+d x)}{b}\right )^{2/3} (b \sec (c+d x))^{2/3}\right ) \int \sqrt [3]{\frac{\cos (c+d x)}{b}} \, dx\\ &=-\frac{3 (4 A+7 C) \cos ^2(c+d x) \, _2F_1\left (\frac{1}{2},\frac{2}{3};\frac{5}{3};\cos ^2(c+d x)\right ) (b \sec (c+d x))^{2/3} \sin (c+d x)}{28 b d \sqrt{\sin ^2(c+d x)}}+\frac{3 A b^2 \tan (c+d x)}{7 d (b \sec (c+d x))^{7/3}}\\ \end{align*}

Mathematica [A]  time = 0.107267, size = 89, normalized size = 0.96 \[ -\frac{3 \sqrt{-\tan ^2(c+d x)} \cot (c+d x) \left (A \cos ^2(c+d x) \text{Hypergeometric2F1}\left (-\frac{7}{6},\frac{1}{2},-\frac{1}{6},\sec ^2(c+d x)\right )+7 C \text{Hypergeometric2F1}\left (-\frac{1}{6},\frac{1}{2},\frac{5}{6},\sec ^2(c+d x)\right )\right )}{7 d \sqrt [3]{b \sec (c+d x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(Cos[c + d*x]^2*(A + C*Sec[c + d*x]^2))/(b*Sec[c + d*x])^(1/3),x]

[Out]

(-3*Cot[c + d*x]*(A*Cos[c + d*x]^2*Hypergeometric2F1[-7/6, 1/2, -1/6, Sec[c + d*x]^2] + 7*C*Hypergeometric2F1[
-1/6, 1/2, 5/6, Sec[c + d*x]^2])*Sqrt[-Tan[c + d*x]^2])/(7*d*(b*Sec[c + d*x])^(1/3))

________________________________________________________________________________________

Maple [F]  time = 0.295, size = 0, normalized size = 0. \begin{align*} \int{ \left ( \cos \left ( dx+c \right ) \right ) ^{2} \left ( A+C \left ( \sec \left ( dx+c \right ) \right ) ^{2} \right ){\frac{1}{\sqrt [3]{b\sec \left ( dx+c \right ) }}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*(A+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(1/3),x)

[Out]

int(cos(d*x+c)^2*(A+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(1/3),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \sec \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )^{2}}{\left (b \sec \left (d x + c\right )\right )^{\frac{1}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(A+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(1/3),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*cos(d*x + c)^2/(b*sec(d*x + c))^(1/3), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (C \cos \left (d x + c\right )^{2} \sec \left (d x + c\right )^{2} + A \cos \left (d x + c\right )^{2}\right )} \left (b \sec \left (d x + c\right )\right )^{\frac{2}{3}}}{b \sec \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(A+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(1/3),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2*sec(d*x + c)^2 + A*cos(d*x + c)^2)*(b*sec(d*x + c))^(2/3)/(b*sec(d*x + c)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*(A+C*sec(d*x+c)**2)/(b*sec(d*x+c))**(1/3),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \sec \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )^{2}}{\left (b \sec \left (d x + c\right )\right )^{\frac{1}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(A+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(1/3),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*cos(d*x + c)^2/(b*sec(d*x + c))^(1/3), x)